List-antimagic labeling of vertex-weighted graphs
نویسندگان
چکیده
A graph $G$ is $k$-$weighted-list-antimagic$ if for any vertex weighting $\omega\colon V(G)\to\mathbb{R}$ and list assignment $L\colon E(G)\to2^{\mathbb{R}}$ with $|L(e)|\geq |E(G)|+k$ there exists an edge labeling $f$ such that $f(e)\in L(e)$ all $e\in E(G)$, labels of edges are pairwise distinct, the sum on incident to a plus weight distinct from at every other vertex. In this paper we prove $n$ vertices having no $K_1$ or $K_2$ component $\lfloor{\frac{4n}{3}}\rfloor$-weighted-list-antimagic. An oriented $k$-$oriented-antimagic$ injective $E(G)$ into $\{1,\dotsc,|E(G)|+k\}$ toward minus away difference sums We admits orientation $\lfloor{\frac{2n}{3}}\rfloor$-oriented-antimagic.
منابع مشابه
On (a, d)-vertex-antimagic total labeling of Harary graphs
Let G = (V, E) be a graph with v vertices and e edges. An (a, d)-vertex-antimagic total labeling is a bijection λ from V (G) ∪ E(G) to the set of consecutive integers 1, 2, . . . , v + e, such that the weights of the vertices form an arithmetic progression with the initial term a and common difference d. If λ(V (G)) = {1, 2, . . . , v} then we call the labeling a super (a, d)-vertex-antimagic t...
متن کاملVertex-antimagic total labelings of graphs
In this paper we introduce a new type of graph labeling, the (a, d)vertex-antimagic total labeling, which is a generalization of several other types of labelings. A connected graph G(V, E) is said to be (a, d)-vertex-antimagic total if there exist positive integers a, d and a bijection λ : V ∪ E → {1, 2, . . . , |V | + |E|} such that the induced mapping gλ : V → W is also a bijection, where W =...
متن کاملAntimagic labeling and canonical decomposition of graphs
An antimagic labeling of a connected graph with m edges is an injective assignment of labels from {1, . . . , m} to the edges such that the sums of incident labels are distinct at distinct vertices. Hartsfield and Ringel conjectured that every connected graph other than K2 has an antimagic labeling. We prove this for the classes of split graphs and graphs decomposable under the canonical decomp...
متن کاملVertex Equitable Labeling of Double Alternate Snake Graphs
Let G be a graph with p vertices and q edges and A = {0, 1, 2, . . . , [q/2]}. A vertex labeling f : V (G) → A induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv. For a ∈ A, let vf (a) be the number of vertices v with f(v) = a. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A, |vf (a) − vf (b)| ≤ 1 and the indu...
متن کاملOn Antimagic Labeling of Odd Regular Graphs
An antimagic labeling of a finite simple undirected graph with q edges is a bijection from the set of edges to the set of integers {1, 2, · · · , q} such that the vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of labels of all edges incident to such vertex. A graph is called antimagic if it admits an antimagic labeling. It was conjectured by N. Hartsfield and G. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics & Theoretical Computer Science
سال: 2021
ISSN: ['1365-8050', '1462-7264']
DOI: https://doi.org/10.46298/dmtcs.5631