List-antimagic labeling of vertex-weighted graphs

نویسندگان

چکیده

A graph $G$ is $k$-$weighted-list-antimagic$ if for any vertex weighting $\omega\colon V(G)\to\mathbb{R}$ and list assignment $L\colon E(G)\to2^{\mathbb{R}}$ with $|L(e)|\geq |E(G)|+k$ there exists an edge labeling $f$ such that $f(e)\in L(e)$ all $e\in E(G)$, labels of edges are pairwise distinct, the sum on incident to a plus weight distinct from at every other vertex. In this paper we prove $n$ vertices having no $K_1$ or $K_2$ component $\lfloor{\frac{4n}{3}}\rfloor$-weighted-list-antimagic. An oriented $k$-$oriented-antimagic$ injective $E(G)$ into $\{1,\dotsc,|E(G)|+k\}$ toward minus away difference sums We admits orientation $\lfloor{\frac{2n}{3}}\rfloor$-oriented-antimagic.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On (a, d)-vertex-antimagic total labeling of Harary graphs

Let G = (V, E) be a graph with v vertices and e edges. An (a, d)-vertex-antimagic total labeling is a bijection λ from V (G) ∪ E(G) to the set of consecutive integers 1, 2, . . . , v + e, such that the weights of the vertices form an arithmetic progression with the initial term a and common difference d. If λ(V (G)) = {1, 2, . . . , v} then we call the labeling a super (a, d)-vertex-antimagic t...

متن کامل

Vertex-antimagic total labelings of graphs

In this paper we introduce a new type of graph labeling, the (a, d)vertex-antimagic total labeling, which is a generalization of several other types of labelings. A connected graph G(V, E) is said to be (a, d)-vertex-antimagic total if there exist positive integers a, d and a bijection λ : V ∪ E → {1, 2, . . . , |V | + |E|} such that the induced mapping gλ : V → W is also a bijection, where W =...

متن کامل

Antimagic labeling and canonical decomposition of graphs

An antimagic labeling of a connected graph with m edges is an injective assignment of labels from {1, . . . , m} to the edges such that the sums of incident labels are distinct at distinct vertices. Hartsfield and Ringel conjectured that every connected graph other than K2 has an antimagic labeling. We prove this for the classes of split graphs and graphs decomposable under the canonical decomp...

متن کامل

Vertex Equitable Labeling of Double Alternate Snake Graphs

Let G be a graph with p vertices and q edges and A = {0, 1, 2, . . . , [q/2]}. A vertex labeling f : V (G) → A induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv. For a ∈ A, let vf (a) be the number of vertices v with f(v) = a. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A, |vf (a) − vf (b)| ≤ 1 and the indu...

متن کامل

On Antimagic Labeling of Odd Regular Graphs

An antimagic labeling of a finite simple undirected graph with q edges is a bijection from the set of edges to the set of integers {1, 2, · · · , q} such that the vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of labels of all edges incident to such vertex. A graph is called antimagic if it admits an antimagic labeling. It was conjectured by N. Hartsfield and G. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics & Theoretical Computer Science

سال: 2021

ISSN: ['1365-8050', '1462-7264']

DOI: https://doi.org/10.46298/dmtcs.5631